MSCEqF 1.0
Multi State Constraint Equivariant Filter for visual inertial navigation
Loading...
Searching...
No Matches
MSCEqF

License

MSCEqF logo

‍MSCEqF: Multi State Constraint Equivariant Filter

MSCEqF is a multi-state constraint equivariant filter for visual-inertial navigation. It is based on the recent advances in equivaraint inertial navigation systems [1, 2, 3, 4].

Features

Design features

  • Developed as a pure C++ library with ROS1 and ROS2 wrappers available

Filter features

  • Supports online camera extrinsic and intrinsic parameters calibration
  • Supports unit-plane projection method
  • Supports anchored euclidean, anchored inverse depth and anchored polar feature representation methods
  • Includes a static initialization routine as well as parametric initialization with custom origin
  • Includes an equivariant zero velocity update routine

Vision frontend features

  • OpenCV based
  • Supports a grid-based multi-thread parallel feature extraction
  • Supports different features detector including FAST and Shi-Tomasi
  • Supports different image enhancment tecniques, including Histogram and CLAHE

Future roadmap

  • ROS1 wrapper
  • ROS2 wrapper
  • Equivariant Zero velocity Update (EqZVU)
  • Unit-sphere projection method support
  • Equivariant Persistent (SLAM) features update support

Documentation

Doxygen documentation is available here: MSCEqF documentation

Dependencies

MSCEqF has the following dependencies which are automatically downloaded and linked against:

Getting started

ROS free setup

$ git clone https://github.com/aau-cns/MSCEqF.git msceqf
$ cd msceqf
$ export BUILD_TYPE=<TYPE> # Replace <TYPE> with one of these: Release, Debug, RelWithDebInfo, ...
$ mkdir -p build/$BUILD_TYPE
$ cd build/$BUILD_TYPE && cmake -DCMAKE_BUILD_TYPE=$BUILD_TYPE -DBUILD_TESTS=ON ../..
$ cmake --build . --config $BUILD_TYPE --target all -j && cd ../..

Run tests

$ cd msceqf/build/$BUILD_TYPE
$ ./msceqf_tests

Run example (Euroc)

After downloading the Euroc follows

$ cd msceqf/build/$BUILD_TYPE
$ ./msceqf_euroc <sequence_name> <euroc_dataset_folder> <euroc_example_folder>

ROS1 setup

$ cd ws/src
$ git clone https://github.com/aau-cns/MSCEqF.git msceqf
$ cd msceqf
$ export BUILD_TYPE=<TYPE> # Replace <TYPE> with one of these: Release, Debug, RelWithDebInfo, ...
$ catkin build -DCMAKE_BUILD_TYPE=$BUILD_TYPE -DROS_BUILD=ON

ROS2 setup

$ cd ws/src
$ git clone https://github.com/aau-cns/MSCEqF.git msceqf
$ cd msceqf
$ export BUILD_TYPE=<TYPE> # Replace <TYPE> with one of these: Release, Debug, RelWithDebInfo, ...
$ colcon build --event-handlers console_cohesion+ --cmake-args -DCMAKE_BUILD_TYPE=$BUILD_TYPE --cmake-args -DROS_BUILD=ON

Docker setup

$ sudo apt update
$ sudo apt install -y nvidia-docker2
$ sudo systemctl restart docker
$ cd <path_to_msceqf_folder>
$ export ROS_VERSION=<Version> # Enter either 1 or 2 (e.g. ROS_VERSION=1)
$ docker build --network=host -t msceqf:ros$ROS_VERSION -f docker/Dockerfile_ros$ROS_VERSION
$ xhost +
$ docker run --net=host -it --gpus all --env="NVIDIA_DRIVER_CAPABILITIES=all" --env="DISPLAY" --env="QT_X11_NO_MITSHM=1" --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" msceqf:ros$ROS_VERSION .

If Nvidia drivere are not supported, simply run docker as follows

$ docker run --net=host -it --gpus all --env="NVIDIA_DRIVER_CAPABILITIES=all" --env="DISPLAY" --env="QT_X11_NO_MITSHM=1" --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" msceqf:ros$ROS_VERSION .

Usage with custom dataset and/or with ROS

Utilizing MSCEqF with a custom dataset or specific sensors is a straightforward process. Follow these steps for seamless integration:

Dataset/Sensor preparation

Ensure you possess the camera intrinsic and extrinsic parameters calibration if working with a custom dataset. In case you are working with real sensors, perform a camera calibration before starting. We recommend using Kalibr for efficient camera calibration.

MSCEqF configuration file

Navigate to the desired location to store the filter configuration file:

cd <path_where_to_store_the_filter_configfile>
nano <configfile_name>.yaml

Populate your configuration file with the following settings:

# Initial standard deviations (attitude, velocity, position, bias, extrinsics, instrinsics)
extended_pose_std: [1.0e-1, 1.0e-1, 1.0e-9, 1.0e-1, 1.0e-1, 1.0e-1, 1.0e-9, 1.0e-9, 1.0e-9]
bias_std: [1.0e-1, 1.0e-1, 1.0e-1, 1.0e-1, 1.0e-1, 1.0e-1]
extrinsics_std: [1.0e-2, 1.0e-2, 1.0e-2, 1.0e-2, 1.0e-2, 1.0e-2]
intrinsics_std: [1.0, 1.0, 1.0, 1.0]
# IMU noise statistics
accelerometer_noise_density: 1.0-2
accelerometer_random_walk: 1.0e-3
gyroscope_noise_density: 1.0e-3
gyroscope_random_walk: 1.0e-4
# Camera calibration (according to kalibr format, both T_imu_cam and T_cam_imu)
distortion_coeffs: [0.0, 0.0, 0.0, 0.0]
distortion_model: radtan
resolution: [320, 240]
intrinsics: [250.0, 250.0, 160.0, 120.0]
T_imu_cam:
- [1.0, 0.0, 0.0, 0.0]
- [0.0, -1.0, 0.0, 0.0]
- [0.0, 0.0, -1.0, 0.0]
- [0.0, 0.0, 0.0, 1.0]
# Initializer options
# For IMU only motion detection set static_initializer_disparity_threshold: 0.0
# For DISPARITY only motion detection set static_initializer_acc_threshold: 0.0
static_initializer_imu_window: 1.0
static_initializer_disparity_window: 0.5
static_initializer_acc_threshold: 0.25
static_initializer_disparity_threshold: 1.0
# Propagator options
# For numerical exponential computation (costly) set state_transition_order: -1
# For approximated first-order exponential computation (recommended on low-power hardware) set state_transition_order: 0
state_transition_order: 0
imu_buffer_max_size: 1000
# Updater options
# Possible options for zero_velocity_update are enabled, disabled, beginning
refine_traingulation: true
feature_min_depth: 0.1
feature_max_depth: 20
feature_refinement_max_iterations: 20
feature_refinement_tollerance: 1e-10
measurement_projection_method: unit_plane
feature_representation: anchored_inverse_depth
pixel_standerd_deviation: 1.0
curvature_correction: true
zero_velocity_update: enabled
# State options
enable_camera_intrinsic_calibration: false
gravity: 9.81
num_clones: 11
# Tracker options
# Possible options for feature_detector are fast and shi-tomasi
equalization_method: histogram
optical_flow_pyramid_levels: 3
detector_pyramid_levels: 1
feature_detector: fast
grid_x_size: 4
grid_y_size: 4
min_feature_pixel_distance: 15
min_features: 100
max_features: 120
fast_threshold: 20
shi_tomasi_quality_level: 0.75
# Track Manager
max_track_length: 400
# Logger level
# Possible levels are 0: Full, 1: INFO, 2: WARN, 3: ERR, 4: INACTIVE
logger_level: 1

Adjust values as needed and customize settings thresholds based on your specific requirements.

License

This software is made available to the public to use (source-available), licensed under the terms of the BSD-2-Clause-License with no commercial use allowed, the full terms of which are made available in the [LICENSE](LICENSE) file.

Usage for academic purposes

If you use this software in an academic research setting, please cite the corresponding papers.

@article{fornasier2023msceqf,
title={MSCEqF: A Multi State Constraint Equivariant Filter for Vision-aided Inertial Navigation},
author={Fornasier, Alessandro and van Goor, Pieter and Allak, Eren and Mahony, Robert and Weiss, Stephan},
journal={arXiv preprint arXiv:2311.11649},
year={2023}
}
@article{fornasier2023equivariant,
title={Equivariant Symmetries for Inertial Navigation Systems},
author={Fornasier, Alessandro and Ge, Yixiao and van Goor, Pieter and Mahony, Robert and Weiss, Stephan},
journal={arXiv preprint arXiv:2309.03765},
year={2023}
}

References

[1] van Goor, Pieter, Tarek Hamel, and Robert Mahony. "Equivariant filter (eqf)." IEEE Transactions on Automatic Control (2022).

[2] Fornasier, Alessandro, et al. "Equivariant filter design for inertial navigation systems with input measurement biases." 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022.

[3] Fornasier, Alessandro, et al. "Overcoming Bias: Equivariant Filter Design for Biased Attitude Estimation with Online Calibration." IEEE Robotics and Automation Letters 7.4 (2022): 12118-12125.

[4] Fornasier, Alessandro, et al. "Equivariant Symmetries for Inertial Navigation Systems." ArXiv preprint.