mars_lib 0.1.0.2abe2576fe7f
Modular and Robust Sensor-Fusion
Loading...
Searching...
No Matches
Public Member Functions | List of all members
mars::BodyvelSensorClass Class Reference

#include </home/runner/work/mars_lib/mars_lib/source/mars/include/mars/sensors/bodyvel/bodyvel_sensor_class.h>

+ Inheritance diagram for mars::BodyvelSensorClass:
+ Collaboration diagram for mars::BodyvelSensorClass:

Public Member Functions

EIGEN_MAKE_ALIGNED_OPERATOR_NEW BodyvelSensorClass (const std::string &name, std::shared_ptr< CoreState > core_states)
 
virtual ~BodyvelSensorClass ()=default
 
BodyvelSensorStateType get_state (const std::shared_ptr< void > &sensor_data)
 
Eigen::MatrixXd get_covariance (const std::shared_ptr< void > &sensor_data)
 get_covariance Resolves a void pointer to the covariance matrix of the corresponding sensor type Each sensor is responsible to cast its own data type
 
void set_initial_calib (std::shared_ptr< void > calibration)
 set_initial_calib Sets the calibration of an individual sensor
 
BufferDataType Initialize (const Time &timestamp, std::shared_ptr< void >, std::shared_ptr< CoreType > latest_core_data)
 Initialize the state of an individual sensor.
 
bool CalcUpdate (const Time &, std::shared_ptr< void > measurement, const CoreStateType &prior_core_state, std::shared_ptr< void > latest_sensor_data, const Eigen::MatrixXd &prior_cov, BufferDataType *new_state_data)
 CalcUpdate Calculates the update for an individual sensor definition.
 
BodyvelSensorStateType ApplyCorrection (const BodyvelSensorStateType &prior_sensor_state, const Eigen::MatrixXd &correction)
 
- Public Member Functions inherited from mars::SensorInterface
virtual EIGEN_MAKE_ALIGNED_OPERATOR_NEW ~SensorInterface ()=default
 

Additional Inherited Members

- Public Attributes inherited from mars::UpdateSensorAbsClass
EIGEN_MAKE_ALIGNED_OPERATOR_NEW int aux_states_
 
int aux_error_states_
 
int ref_to_nav_
 
Eigen::MatrixXd residual_
 
Eigen::VectorXd R_
 Measurement noise "squared".
 
Eigen::MatrixXd F_
 
Eigen::MatrixXd H_
 
Eigen::MatrixXd Q_
 
std::shared_ptr< void > initial_calib_ { nullptr }
 
bool initial_calib_provided_ { false }
 True if an initial calibration was provided.
 
Chi2 chi2_
 
std::shared_ptr< CoreStatecore_states_
 
- Public Attributes inherited from mars::SensorAbsClass
int id_ { -1 }
 
std::string name_
 Name of the individual sensor instance.
 
bool is_initialized_ { false }
 True if the sensor has been initialized.
 
bool do_update_ { true }
 True if updates should be performed with the sensor.
 
int type_ { -1 }
 Future feature, holds information such as position or orientation for highlevel decissions.
 
bool const_ref_to_nav_ { true }
 True if the reference should not be estimated.
 
bool ref_to_nav_given_ { false }
 True if the reference to the navigation frame is given by initial calibration.
 
bool use_dynamic_meas_noise_ { false }
 True if dynamic noise values from measurements should be used.
 

Constructor & Destructor Documentation

◆ BodyvelSensorClass()

EIGEN_MAKE_ALIGNED_OPERATOR_NEW mars::BodyvelSensorClass::BodyvelSensorClass ( const std::string &  name,
std::shared_ptr< CoreState core_states 
)
inline
42 {
43 name_ = name;
44 core_states_ = std::move(core_states);
45 const_ref_to_nav_ = false;
47
48 // chi2
49 chi2_.set_dof(3);
50
51 std::cout << "Created: [" << this->name_ << "] Sensor" << std::endl;
52 }
void set_dof(const int &value)
set_dof Set degree of freedom for the X2 distribution
std::string name_
Name of the individual sensor instance.
Definition sensor_abs_class.h:23
bool const_ref_to_nav_
True if the reference should not be estimated.
Definition sensor_abs_class.h:27
bool initial_calib_provided_
True if an initial calibration was provided.
Definition update_sensor_abs_class.h:38
std::shared_ptr< CoreState > core_states_
Definition update_sensor_abs_class.h:42
Chi2 chi2_
Definition update_sensor_abs_class.h:40
+ Here is the call graph for this function:

◆ ~BodyvelSensorClass()

virtual mars::BodyvelSensorClass::~BodyvelSensorClass ( )
virtualdefault

Member Function Documentation

◆ get_state()

BodyvelSensorStateType mars::BodyvelSensorClass::get_state ( const std::shared_ptr< void > &  sensor_data)
inline
57 {
58 BodyvelSensorData data = *static_cast<BodyvelSensorData*>(sensor_data.get());
59 return data.state_;
60 }
BindSensorData< BodyvelSensorStateType > BodyvelSensorData
Definition bodyvel_sensor_class.h:34

◆ get_covariance()

Eigen::MatrixXd mars::BodyvelSensorClass::get_covariance ( const std::shared_ptr< void > &  sensor_data)
inlinevirtual

get_covariance Resolves a void pointer to the covariance matrix of the corresponding sensor type Each sensor is responsible to cast its own data type

Parameters
sensor_data
Returns
Covariance matrix contained in the sensor data struct

Implements mars::SensorInterface.

63 {
64 BodyvelSensorData data = *static_cast<BodyvelSensorData*>(sensor_data.get());
65 return data.get_full_cov();
66 }
+ Here is the call graph for this function:

◆ set_initial_calib()

void mars::BodyvelSensorClass::set_initial_calib ( std::shared_ptr< void >  calibration)
inlinevirtual

set_initial_calib Sets the calibration of an individual sensor

Parameters
calibration

Implements mars::SensorInterface.

69 {
70 initial_calib_ = calibration;
72 }
std::shared_ptr< void > initial_calib_
Definition update_sensor_abs_class.h:37

◆ Initialize()

BufferDataType mars::BodyvelSensorClass::Initialize ( const Time timestamp,
std::shared_ptr< void >  measurement,
std::shared_ptr< CoreType latest_core_data 
)
inlinevirtual

Initialize the state of an individual sensor.

Parameters
timestampcurrent timestamp
measurementcurrent sensor measurement
latest_core_data
Returns

Implements mars::SensorInterface.

76 {
77 // BodyvelMeasurementType measurement = *static_cast<BodyvelMeasurementType*>(sensor_data.get());
78
79 BodyvelSensorData sensor_state;
80 std::string calibration_type;
81
83 {
84 calibration_type = "Given";
85
86 BodyvelSensorData calib = *static_cast<BodyvelSensorData*>(initial_calib_.get());
87
88 sensor_state.state_ = calib.state_;
89 sensor_state.sensor_cov_ = calib.sensor_cov_;
90 }
91 else
92 {
93 calibration_type = "Auto";
94
95 std::cout << "Bodyvel calibration AUTO init not implemented yet" << std::endl;
96 exit(EXIT_FAILURE);
97 }
98
99 // Bypass core state for the returned object
100 BufferDataType result(std::make_shared<CoreType>(*latest_core_data.get()),
101 std::make_shared<BodyvelSensorData>(sensor_state));
102
103 is_initialized_ = true;
104
105 std::cout << "Info: Initialized [" << name_ << "] with [" << calibration_type << "] Calibration at t=" << timestamp
106 << std::endl;
107
109 {
110 std::cout << "Info: [" << name_ << "] Calibration(rounded):" << std::endl;
111 std::cout << "\tPosition[m]: [" << sensor_state.state_.p_ib_.transpose() << " ]" << std::endl;
112 std::cout << "\tOrientation[deg]: ["
113 << sensor_state.state_.q_ib_.toRotationMatrix().eulerAngles(0, 1, 2).transpose() * (180 / M_PI) << " ]"
114 << std::endl;
115 }
116
117 return result;
118 }
bool is_initialized_
True if the sensor has been initialized.
Definition sensor_abs_class.h:24

◆ CalcUpdate()

bool mars::BodyvelSensorClass::CalcUpdate ( const Time timestamp,
std::shared_ptr< void >  measurement,
const CoreStateType prior_core_state_data,
std::shared_ptr< void >  latest_sensor_data,
const Eigen::MatrixXd &  prior_cov,
BufferDataType new_state_data 
)
inlinevirtual

CalcUpdate Calculates the update for an individual sensor definition.

Parameters
timestampcurrent timestamp
measurementcurrent sensor measurement
prior_core_state_data
latest_sensor_data
prior_covPrior covariance containing core, sensor and sensor cross covariance
new_state_dataUpdated state data
Returns
True if the update was successful, false if the update was rejected

Implements mars::SensorInterface.

123 {
124 // Cast the sensor measurement and prior state information
125 BodyvelMeasurementType* meas = static_cast<BodyvelMeasurementType*>(measurement.get());
126 BodyvelSensorData* prior_sensor_data = static_cast<BodyvelSensorData*>(latest_sensor_data.get());
127
128 // Decompose sensor measurement
129 Eigen::Vector3d v_meas = meas->velocity_;
130
131 // Extract sensor state
132 BodyvelSensorStateType prior_sensor_state(prior_sensor_data->state_);
133
134 // Generate measurement noise matrix and check
135 // if noisevalues from the measurement object should be used
136 Eigen::MatrixXd R_meas_dyn;
137 if (meas->has_meas_noise && use_dynamic_meas_noise_)
138 {
139 meas->get_meas_noise(&R_meas_dyn);
140 }
141 else
142 {
143 R_meas_dyn = this->R_.asDiagonal();
144 }
145 const Eigen::Matrix<double, 3, 3> R_meas = R_meas_dyn;
146
147 const int size_of_core_state = CoreStateType::size_error_;
148 const int size_of_sensor_state = prior_sensor_state.cov_size_;
149 const int size_of_full_error_state = size_of_core_state + size_of_sensor_state;
150 const Eigen::MatrixXd P = prior_cov;
151 assert(P.size() == size_of_full_error_state * size_of_full_error_state);
152
153 // Calculate the measurement jacobian H
154 // const Eigen::Matrix3d I_3 = Eigen::Matrix3d::Identity();
155 const Eigen::Matrix3d Z_3 = Eigen::Matrix3d::Zero();
156 // const Eigen::Vector3d P_wi = prior_core_state.p_wi_;
157 const Eigen::Vector3d V_wi = prior_core_state.v_wi_;
158 const Eigen::Matrix3d R_wi = prior_core_state.q_wi_.toRotationMatrix();
159 const Eigen::Vector3d P_ib = prior_sensor_state.p_ib_;
160 const Eigen::Matrix3d R_ib = prior_sensor_state.q_ib_.toRotationMatrix();
161
162 const Eigen::Vector3d w_wi = prior_core_state.w_m_ - prior_core_state.b_w_;
163 const Eigen::Matrix3d w_wi_skew = Utils::Skew(w_wi);
164
165 // Linear Velocity
166 const Eigen::Matrix3d Hv_pwi = Z_3;
167 const Eigen::Matrix3d Hv_vwi = R_ib.transpose() * R_wi.transpose();
168 const Eigen::Matrix3d Hv_rwi = R_ib.transpose() * Utils::Skew(R_wi.transpose() * V_wi);
169 const Eigen::Matrix3d Hv_bw = R_ib.transpose() * Utils::Skew(P_ib); // Z_3;
170 const Eigen::Matrix3d Hv_ba = Z_3;
171 const Eigen::Matrix3d Hv_pib = R_ib.transpose() * w_wi_skew;
172 const Eigen::Matrix3d Hv_rib =
173 Utils::Skew(R_ib.transpose() * R_wi.transpose() * V_wi) + Utils::Skew(R_ib.transpose() * w_wi_skew * P_ib);
174
175 // Assemble the jacobian for the velocity (horizontal)
176 // H_v = [Hv_pwi Hv_vwi Hv_rwi Hv_bw Hv_ba Hv_pib Hv_rib];
177 Eigen::MatrixXd H_v(3, Hv_pwi.cols() + Hv_vwi.cols() + Hv_rwi.cols() + Hv_bw.cols() + Hv_ba.cols() + Hv_pib.cols() +
178 Hv_rib.cols());
179 H_v << Hv_pwi, Hv_vwi, Hv_rwi, Hv_bw, Hv_ba, Hv_pib, Hv_rib;
180
181 // Combine all jacobians (vertical)
182 Eigen::MatrixXd H(H_v.rows(), H_v.cols());
183 H << H_v;
184
185 // Calculate the residual z = z~ - (estimate)
186 // Velocity
187 const Eigen::Vector3d v_est = R_ib.transpose() * R_wi.transpose() * V_wi + R_ib.transpose() * w_wi_skew * P_ib;
188 residual_ = Eigen::MatrixXd(v_est.rows(), 1);
189 residual_ = v_meas - v_est;
190
191 // Perform EKF calculations
192 mars::Ekf ekf(H, R_meas, residual_, P);
193 const Eigen::MatrixXd correction = ekf.CalculateCorrection(&chi2_);
194 assert(correction.size() == size_of_full_error_state * 1);
195
196 // Perform Chi2 test
197 if (!chi2_.passed_ && chi2_.do_test_)
198 {
200 return false;
201 }
202
203 Eigen::MatrixXd P_updated = ekf.CalculateCovUpdate();
204 assert(P_updated.size() == size_of_full_error_state * size_of_full_error_state);
205 P_updated = Utils::EnforceMatrixSymmetry(P_updated);
206
207 // Apply Core Correction
208 CoreStateVector core_correction = correction.block(0, 0, CoreStateType::size_error_, 1);
209 CoreStateType corrected_core_state = CoreStateType::ApplyCorrection(prior_core_state, core_correction);
210
211 // Apply Sensor Correction
212 const Eigen::MatrixXd sensor_correction = correction.block(size_of_core_state, 0, size_of_sensor_state, 1);
213 const BodyvelSensorStateType corrected_sensor_state = ApplyCorrection(prior_sensor_state, sensor_correction);
214
215 // Return Results
216 // CoreState data
217 CoreType core_data;
218 core_data.cov_ = P_updated.block(0, 0, CoreStateType::size_error_, CoreStateType::size_error_);
219 core_data.state_ = corrected_core_state;
220
221 // SensorState data
222 std::shared_ptr<BodyvelSensorData> sensor_data(std::make_shared<BodyvelSensorData>());
223 sensor_data->set_cov(P_updated);
224 sensor_data->state_ = corrected_sensor_state;
225
226 BufferDataType state_entry(std::make_shared<CoreType>(core_data), sensor_data);
227
229 {
230 // corrected_sensor_data.ref_to_nav = prior_ref_to_nav;
231 }
232 else
233 {
234 // TODO also estimate ref to nav
235 }
236
237 *new_state_data = state_entry;
238
239 return true;
240 }
BodyvelSensorStateType ApplyCorrection(const BodyvelSensorStateType &prior_sensor_state, const Eigen::MatrixXd &correction)
Definition bodyvel_sensor_class.h:242
bool passed_
Determine if the test is performed or not.
Definition ekf.h:84
bool do_test_
Upper critival value.
Definition ekf.h:83
void PrintReport(const std::string &name)
PrintReport Print a formated report e.g. if the test did not pass.
static constexpr int size_error_
Definition core_state_type.h:38
static CoreStateType ApplyCorrection(CoreStateType state_prior, Eigen::Matrix< double, CoreStateType::size_error_, 1 > correction)
ApplyCorrection.
Definition core_state_type.h:46
Definition ekf.h:92
bool use_dynamic_meas_noise_
True if dynamic noise values from measurements should be used.
Definition sensor_abs_class.h:29
Eigen::VectorXd R_
Measurement noise "squared".
Definition update_sensor_abs_class.h:32
Eigen::MatrixXd residual_
Definition update_sensor_abs_class.h:31
static Eigen::MatrixXd EnforceMatrixSymmetry(const Eigen::Ref< const Eigen::MatrixXd > &mat_in)
EnforceMatrixSymmetry.
static Eigen::Matrix3d Skew(const Eigen::Vector3d &v)
skew generate the skew symmetric matrix of v
Eigen::Matrix< double, CoreStateType::size_error_, 1 > CoreStateVector
Definition core_state_type.h:135
+ Here is the call graph for this function:

◆ ApplyCorrection()

BodyvelSensorStateType mars::BodyvelSensorClass::ApplyCorrection ( const BodyvelSensorStateType prior_sensor_state,
const Eigen::MatrixXd &  correction 
)
inline
244 {
245 // state + error state correction
246 // with quaternion from small angle approx -> new state
247
248 BodyvelSensorStateType corrected_sensor_state;
249 corrected_sensor_state.p_ib_ = prior_sensor_state.p_ib_ + correction.block(0, 0, 3, 1);
250 corrected_sensor_state.q_ib_ =
251 Utils::ApplySmallAngleQuatCorr(prior_sensor_state.q_ib_, correction.block(3, 0, 3, 1));
252 return corrected_sensor_state;
253 }
static Eigen::Quaterniond ApplySmallAngleQuatCorr(const Eigen::Quaterniond &q_prior, const Eigen::Vector3d &correction)
ApplySmallAngleQuatCorr.
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

The documentation for this class was generated from the following file: