mars_lib 0.1.0.2abe2576fe7f
Modular and Robust Sensor-Fusion
Loading...
Searching...
No Matches
bodyvel_sensor_class.h
Go to the documentation of this file.
1// Copyright (C) 2021 Martin Scheiber and Christian Brommer, Control of Networked Systems, University of Klagenfurt,
2// Austria.
3//
4// All rights reserved.
5//
6// This software is licensed under the terms of the BSD-2-Clause-License with
7// no commercial use allowed, the full terms of which are made available
8// in the LICENSE file. No license in patents is granted.
9//
10// You can contact the authors at <martin.scheiber@ieee.org>
11// and <christian.brommer@ieee.org>.
12
13#ifndef BODYVELSENSORCLASS_H
14#define BODYVELSENSORCLASS_H
15
16#include <mars/core_state.h>
17#include <mars/ekf.h>
23#include <mars/time.h>
26#include <cmath>
27#include <iostream>
28#include <memory>
29#include <string>
30#include <utility>
31
32namespace mars
33{
35
37{
38public:
39 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
40
41 BodyvelSensorClass(const std::string& name, std::shared_ptr<CoreState> core_states)
42 {
43 name_ = name;
44 core_states_ = std::move(core_states);
45 const_ref_to_nav_ = false;
47
48 // chi2
49 chi2_.set_dof(3);
50
51 std::cout << "Created: [" << this->name_ << "] Sensor" << std::endl;
52 }
53
54 virtual ~BodyvelSensorClass() = default;
55
56 BodyvelSensorStateType get_state(const std::shared_ptr<void>& sensor_data)
57 {
58 BodyvelSensorData data = *static_cast<BodyvelSensorData*>(sensor_data.get());
59 return data.state_;
60 }
61
62 Eigen::MatrixXd get_covariance(const std::shared_ptr<void>& sensor_data)
63 {
64 BodyvelSensorData data = *static_cast<BodyvelSensorData*>(sensor_data.get());
65 return data.get_full_cov();
66 }
67
68 void set_initial_calib(std::shared_ptr<void> calibration)
69 {
70 initial_calib_ = calibration;
72 }
73
74 BufferDataType Initialize(const Time& timestamp, std::shared_ptr<void> /*sensor_data*/,
75 std::shared_ptr<CoreType> latest_core_data)
76 {
77 // BodyvelMeasurementType measurement = *static_cast<BodyvelMeasurementType*>(sensor_data.get());
78
79 BodyvelSensorData sensor_state;
80 std::string calibration_type;
81
83 {
84 calibration_type = "Given";
85
86 BodyvelSensorData calib = *static_cast<BodyvelSensorData*>(initial_calib_.get());
87
88 sensor_state.state_ = calib.state_;
89 sensor_state.sensor_cov_ = calib.sensor_cov_;
90 }
91 else
92 {
93 calibration_type = "Auto";
94
95 std::cout << "Bodyvel calibration AUTO init not implemented yet" << std::endl;
96 exit(EXIT_FAILURE);
97 }
98
99 // Bypass core state for the returned object
100 BufferDataType result(std::make_shared<CoreType>(*latest_core_data.get()),
101 std::make_shared<BodyvelSensorData>(sensor_state));
102
103 is_initialized_ = true;
104
105 std::cout << "Info: Initialized [" << name_ << "] with [" << calibration_type << "] Calibration at t=" << timestamp
106 << std::endl;
107
109 {
110 std::cout << "Info: [" << name_ << "] Calibration(rounded):" << std::endl;
111 std::cout << "\tPosition[m]: [" << sensor_state.state_.p_ib_.transpose() << " ]" << std::endl;
112 std::cout << "\tOrientation[deg]: ["
113 << sensor_state.state_.q_ib_.toRotationMatrix().eulerAngles(0, 1, 2).transpose() * (180 / M_PI) << " ]"
114 << std::endl;
115 }
116
117 return result;
118 }
119
120 bool CalcUpdate(const Time& /*timestamp*/, std::shared_ptr<void> measurement, const CoreStateType& prior_core_state,
121 std::shared_ptr<void> latest_sensor_data, const Eigen::MatrixXd& prior_cov,
122 BufferDataType* new_state_data)
123 {
124 // Cast the sensor measurement and prior state information
125 BodyvelMeasurementType* meas = static_cast<BodyvelMeasurementType*>(measurement.get());
126 BodyvelSensorData* prior_sensor_data = static_cast<BodyvelSensorData*>(latest_sensor_data.get());
127
128 // Decompose sensor measurement
129 Eigen::Vector3d v_meas = meas->velocity_;
130
131 // Extract sensor state
132 BodyvelSensorStateType prior_sensor_state(prior_sensor_data->state_);
133
134 // Generate measurement noise matrix and check
135 // if noisevalues from the measurement object should be used
136 Eigen::MatrixXd R_meas_dyn;
138 {
139 meas->get_meas_noise(&R_meas_dyn);
140 }
141 else
142 {
143 R_meas_dyn = this->R_.asDiagonal();
144 }
145 const Eigen::Matrix<double, 3, 3> R_meas = R_meas_dyn;
146
147 const int size_of_core_state = CoreStateType::size_error_;
148 const int size_of_sensor_state = prior_sensor_state.cov_size_;
149 const int size_of_full_error_state = size_of_core_state + size_of_sensor_state;
150 const Eigen::MatrixXd P = prior_cov;
151 assert(P.size() == size_of_full_error_state * size_of_full_error_state);
152
153 // Calculate the measurement jacobian H
154 // const Eigen::Matrix3d I_3 = Eigen::Matrix3d::Identity();
155 const Eigen::Matrix3d Z_3 = Eigen::Matrix3d::Zero();
156 // const Eigen::Vector3d P_wi = prior_core_state.p_wi_;
157 const Eigen::Vector3d V_wi = prior_core_state.v_wi_;
158 const Eigen::Matrix3d R_wi = prior_core_state.q_wi_.toRotationMatrix();
159 const Eigen::Vector3d P_ib = prior_sensor_state.p_ib_;
160 const Eigen::Matrix3d R_ib = prior_sensor_state.q_ib_.toRotationMatrix();
161
162 const Eigen::Vector3d w_wi = prior_core_state.w_m_ - prior_core_state.b_w_;
163 const Eigen::Matrix3d w_wi_skew = Utils::Skew(w_wi);
164
165 // Linear Velocity
166 const Eigen::Matrix3d Hv_pwi = Z_3;
167 const Eigen::Matrix3d Hv_vwi = R_ib.transpose() * R_wi.transpose();
168 const Eigen::Matrix3d Hv_rwi = R_ib.transpose() * Utils::Skew(R_wi.transpose() * V_wi);
169 const Eigen::Matrix3d Hv_bw = R_ib.transpose() * Utils::Skew(P_ib); // Z_3;
170 const Eigen::Matrix3d Hv_ba = Z_3;
171 const Eigen::Matrix3d Hv_pib = R_ib.transpose() * w_wi_skew;
172 const Eigen::Matrix3d Hv_rib =
173 Utils::Skew(R_ib.transpose() * R_wi.transpose() * V_wi) + Utils::Skew(R_ib.transpose() * w_wi_skew * P_ib);
174
175 // Assemble the jacobian for the velocity (horizontal)
176 // H_v = [Hv_pwi Hv_vwi Hv_rwi Hv_bw Hv_ba Hv_pib Hv_rib];
177 Eigen::MatrixXd H_v(3, Hv_pwi.cols() + Hv_vwi.cols() + Hv_rwi.cols() + Hv_bw.cols() + Hv_ba.cols() + Hv_pib.cols() +
178 Hv_rib.cols());
179 H_v << Hv_pwi, Hv_vwi, Hv_rwi, Hv_bw, Hv_ba, Hv_pib, Hv_rib;
180
181 // Combine all jacobians (vertical)
182 Eigen::MatrixXd H(H_v.rows(), H_v.cols());
183 H << H_v;
184
185 // Calculate the residual z = z~ - (estimate)
186 // Velocity
187 const Eigen::Vector3d v_est = R_ib.transpose() * R_wi.transpose() * V_wi + R_ib.transpose() * w_wi_skew * P_ib;
188 residual_ = Eigen::MatrixXd(v_est.rows(), 1);
189 residual_ = v_meas - v_est;
190
191 // Perform EKF calculations
192 mars::Ekf ekf(H, R_meas, residual_, P);
193 const Eigen::MatrixXd correction = ekf.CalculateCorrection(&chi2_);
194 assert(correction.size() == size_of_full_error_state * 1);
195
196 // Perform Chi2 test
197 if (!chi2_.passed_ && chi2_.do_test_)
198 {
200 return false;
201 }
202
203 Eigen::MatrixXd P_updated = ekf.CalculateCovUpdate();
204 assert(P_updated.size() == size_of_full_error_state * size_of_full_error_state);
205 P_updated = Utils::EnforceMatrixSymmetry(P_updated);
206
207 // Apply Core Correction
208 CoreStateVector core_correction = correction.block(0, 0, CoreStateType::size_error_, 1);
209 CoreStateType corrected_core_state = CoreStateType::ApplyCorrection(prior_core_state, core_correction);
210
211 // Apply Sensor Correction
212 const Eigen::MatrixXd sensor_correction = correction.block(size_of_core_state, 0, size_of_sensor_state, 1);
213 const BodyvelSensorStateType corrected_sensor_state = ApplyCorrection(prior_sensor_state, sensor_correction);
214
215 // Return Results
216 // CoreState data
217 CoreType core_data;
218 core_data.cov_ = P_updated.block(0, 0, CoreStateType::size_error_, CoreStateType::size_error_);
219 core_data.state_ = corrected_core_state;
220
221 // SensorState data
222 std::shared_ptr<BodyvelSensorData> sensor_data(std::make_shared<BodyvelSensorData>());
223 sensor_data->set_cov(P_updated);
224 sensor_data->state_ = corrected_sensor_state;
225
226 BufferDataType state_entry(std::make_shared<CoreType>(core_data), sensor_data);
227
229 {
230 // corrected_sensor_data.ref_to_nav = prior_ref_to_nav;
231 }
232 else
233 {
234 // TODO also estimate ref to nav
235 }
236
237 *new_state_data = state_entry;
238
239 return true;
240 }
241
243 const Eigen::MatrixXd& correction)
244 {
245 // state + error state correction
246 // with quaternion from small angle approx -> new state
247
248 BodyvelSensorStateType corrected_sensor_state;
249 corrected_sensor_state.p_ib_ = prior_sensor_state.p_ib_ + correction.block(0, 0, 3, 1);
250 corrected_sensor_state.q_ib_ =
251 Utils::ApplySmallAngleQuatCorr(prior_sensor_state.q_ib_, correction.block(3, 0, 3, 1));
252 return corrected_sensor_state;
253 }
254};
255} // namespace mars
256
257#endif // BODYVELSENSORCLASS_H
bool has_meas_noise
Definition measurement_base_class.h:23
bool get_meas_noise(Eigen::MatrixXd *meas_noise)
get the measurement noise associated with the current sensor measurement
Definition measurement_base_class.h:25
int cov_size_
Definition base_states.h:25
The BaseSensorData class binds the sensor state and covariance matrix.
Definition bind_sensor_data.h:29
EIGEN_MAKE_ALIGNED_OPERATOR_NEW T state_
Definition bind_sensor_data.h:35
Eigen::MatrixXd get_full_cov() const
get_full_cov builds the full covariance matrix
Definition bind_sensor_data.h:63
Eigen::MatrixXd sensor_cov_
covariance of the sensor states
Definition bind_sensor_data.h:37
Definition bodyvel_measurement_type.h:23
EIGEN_MAKE_ALIGNED_OPERATOR_NEW Eigen::Vector3d velocity_
Velocity [x y z].
Definition bodyvel_measurement_type.h:27
Definition bodyvel_sensor_class.h:37
virtual ~BodyvelSensorClass()=default
void set_initial_calib(std::shared_ptr< void > calibration)
set_initial_calib Sets the calibration of an individual sensor
Definition bodyvel_sensor_class.h:68
BodyvelSensorStateType ApplyCorrection(const BodyvelSensorStateType &prior_sensor_state, const Eigen::MatrixXd &correction)
Definition bodyvel_sensor_class.h:242
Eigen::MatrixXd get_covariance(const std::shared_ptr< void > &sensor_data)
get_covariance Resolves a void pointer to the covariance matrix of the corresponding sensor type Each...
Definition bodyvel_sensor_class.h:62
BodyvelSensorStateType get_state(const std::shared_ptr< void > &sensor_data)
Definition bodyvel_sensor_class.h:56
bool CalcUpdate(const Time &, std::shared_ptr< void > measurement, const CoreStateType &prior_core_state, std::shared_ptr< void > latest_sensor_data, const Eigen::MatrixXd &prior_cov, BufferDataType *new_state_data)
CalcUpdate Calculates the update for an individual sensor definition.
Definition bodyvel_sensor_class.h:120
EIGEN_MAKE_ALIGNED_OPERATOR_NEW BodyvelSensorClass(const std::string &name, std::shared_ptr< CoreState > core_states)
Definition bodyvel_sensor_class.h:41
BufferDataType Initialize(const Time &timestamp, std::shared_ptr< void >, std::shared_ptr< CoreType > latest_core_data)
Initialize the state of an individual sensor.
Definition bodyvel_sensor_class.h:74
Definition bodyvel_sensor_state_type.h:22
Eigen::Quaternion< double > q_ib_
Definition bodyvel_sensor_state_type.h:27
EIGEN_MAKE_ALIGNED_OPERATOR_NEW Eigen::Vector3d p_ib_
Definition bodyvel_sensor_state_type.h:26
The BufferDataType binds the core and sensor state in form of a shared void pointer.
Definition buffer_data_type.h:36
bool passed_
Determine if the test is performed or not.
Definition ekf.h:84
bool do_test_
Upper critival value.
Definition ekf.h:83
void set_dof(const int &value)
set_dof Set degree of freedom for the X2 distribution
void PrintReport(const std::string &name)
PrintReport Print a formated report e.g. if the test did not pass.
Definition core_state_type.h:21
Eigen::Vector3d w_m_
Definition core_state_type.h:34
static constexpr int size_error_
Definition core_state_type.h:38
Eigen::Vector3d v_wi_
Definition core_state_type.h:28
Eigen::Vector3d b_w_
Definition core_state_type.h:30
Eigen::Quaternion< double > q_wi_
Definition core_state_type.h:29
static CoreStateType ApplyCorrection(CoreStateType state_prior, Eigen::Matrix< double, CoreStateType::size_error_, 1 > correction)
ApplyCorrection.
Definition core_state_type.h:46
Definition core_type.h:19
CoreStateMatrix cov_
Definition core_type.h:22
CoreStateType state_
Definition core_type.h:21
Definition ekf.h:92
Eigen::MatrixXd CalculateCovUpdate()
CalculateCovUpdate Updating the state covariance after the state update.
Eigen::MatrixXd CalculateCorrection()
Kalman gain.
std::string name_
Name of the individual sensor instance.
Definition sensor_abs_class.h:23
bool is_initialized_
True if the sensor has been initialized.
Definition sensor_abs_class.h:24
bool const_ref_to_nav_
True if the reference should not be estimated.
Definition sensor_abs_class.h:27
bool use_dynamic_meas_noise_
True if dynamic noise values from measurements should be used.
Definition sensor_abs_class.h:29
Definition time.h:20
Definition update_sensor_abs_class.h:24
bool initial_calib_provided_
True if an initial calibration was provided.
Definition update_sensor_abs_class.h:38
std::shared_ptr< CoreState > core_states_
Definition update_sensor_abs_class.h:42
Eigen::VectorXd R_
Measurement noise "squared".
Definition update_sensor_abs_class.h:32
std::shared_ptr< void > initial_calib_
Definition update_sensor_abs_class.h:37
Chi2 chi2_
Definition update_sensor_abs_class.h:40
Eigen::MatrixXd residual_
Definition update_sensor_abs_class.h:31
static Eigen::MatrixXd EnforceMatrixSymmetry(const Eigen::Ref< const Eigen::MatrixXd > &mat_in)
EnforceMatrixSymmetry.
static Eigen::Matrix3d Skew(const Eigen::Vector3d &v)
skew generate the skew symmetric matrix of v
static Eigen::Quaterniond ApplySmallAngleQuatCorr(const Eigen::Quaterniond &q_prior, const Eigen::Vector3d &correction)
ApplySmallAngleQuatCorr.
Definition buffer.h:27
Eigen::Matrix< double, CoreStateType::size_error_, 1 > CoreStateVector
Definition core_state_type.h:135