mars_lib  0.1.0.3dc76ee85e09
Modular and Robust Sensor-Fusion
Public Member Functions | List of all members
mars::PositionSensorClass Class Reference

#include </home/runner/work/mars_lib/mars_lib/source/mars/include/mars/sensors/position/position_sensor_class.h>

+ Inheritance diagram for mars::PositionSensorClass:
+ Collaboration diagram for mars::PositionSensorClass:

Public Member Functions

EIGEN_MAKE_ALIGNED_OPERATOR_NEW PositionSensorClass (const std::string &name, std::shared_ptr< CoreState > core_states)
 
virtual ~PositionSensorClass ()=default
 
PositionSensorStateType get_state (const std::shared_ptr< void > &sensor_data)
 
Eigen::MatrixXd get_covariance (const std::shared_ptr< void > &sensor_data)
 get_covariance Resolves a void pointer to the covariance matrix of the corresponding sensor type Each sensor is responsible to cast its own data type More...
 
void set_initial_calib (std::shared_ptr< void > calibration)
 set_initial_calib Sets the calibration of an individual sensor More...
 
BufferDataType Initialize (const Time &timestamp, std::shared_ptr< void >, std::shared_ptr< CoreType > latest_core_data)
 Initialize the state of an individual sensor. More...
 
bool CalcUpdate (const Time &, std::shared_ptr< void > measurement, const CoreStateType &prior_core_state, std::shared_ptr< void > latest_sensor_data, const Eigen::MatrixXd &prior_cov, BufferDataType *new_state_data)
 CalcUpdate Calculates the update for an individual sensor definition. More...
 
PositionSensorStateType ApplyCorrection (const PositionSensorStateType &prior_sensor_state, const Eigen::MatrixXd &correction)
 
- Public Member Functions inherited from mars::SensorInterface
virtual EIGEN_MAKE_ALIGNED_OPERATOR_NEW ~SensorInterface ()=default
 

Additional Inherited Members

- Public Attributes inherited from mars::UpdateSensorAbsClass
EIGEN_MAKE_ALIGNED_OPERATOR_NEW int aux_states_
 
int aux_error_states_
 
int ref_to_nav_
 
Eigen::MatrixXd residual_
 
Eigen::VectorXd R_
 Measurement noise "squared". More...
 
Eigen::MatrixXd F_
 
Eigen::MatrixXd H_
 
Eigen::MatrixXd Q_
 
std::shared_ptr< void > initial_calib_ { nullptr }
 
bool initial_calib_provided_ { false }
 True if an initial calibration was provided. More...
 
Chi2 chi2_
 
std::shared_ptr< CoreStatecore_states_
 
- Public Attributes inherited from mars::SensorAbsClass
int id_ { -1 }
 
std::string name_
 Name of the individual sensor instance. More...
 
bool is_initialized_ { false }
 True if the sensor has been initialized. More...
 
bool do_update_ { true }
 True if updates should be performed with the sensor. More...
 
int type_ { -1 }
 Future feature, holds information such as position or orientation for highlevel decissions. More...
 
bool const_ref_to_nav_ { true }
 True if the reference should not be estimated. More...
 
bool ref_to_nav_given_ { false }
 True if the reference to the navigation frame is given by initial calibration. More...
 
bool use_dynamic_meas_noise_ { false }
 True if dynamic noise values from measurements should be used. More...
 

Constructor & Destructor Documentation

◆ PositionSensorClass()

EIGEN_MAKE_ALIGNED_OPERATOR_NEW mars::PositionSensorClass::PositionSensorClass ( const std::string &  name,
std::shared_ptr< CoreState core_states 
)
inline
37  {
38  name_ = name;
39  core_states_ = std::move(core_states);
40  const_ref_to_nav_ = false;
42 
43  // chi2
44  chi2_.set_dof(3);
45 
46  std::cout << "Created: [" << this->name_ << "] Sensor" << std::endl;
47  }
void set_dof(const int &value)
set_dof Set degree of freedom for the X2 distribution
std::string name_
Name of the individual sensor instance.
Definition: sensor_abs_class.h:23
bool const_ref_to_nav_
True if the reference should not be estimated.
Definition: sensor_abs_class.h:27
bool initial_calib_provided_
True if an initial calibration was provided.
Definition: update_sensor_abs_class.h:38
std::shared_ptr< CoreState > core_states_
Definition: update_sensor_abs_class.h:42
Chi2 chi2_
Definition: update_sensor_abs_class.h:40
+ Here is the call graph for this function:

◆ ~PositionSensorClass()

virtual mars::PositionSensorClass::~PositionSensorClass ( )
virtualdefault

Member Function Documentation

◆ get_state()

PositionSensorStateType mars::PositionSensorClass::get_state ( const std::shared_ptr< void > &  sensor_data)
inline
52  {
53  PositionSensorData data = *static_cast<PositionSensorData*>(sensor_data.get());
54  return data.state_;
55  }
BindSensorData< PositionSensorStateType > PositionSensorData
Definition: position_sensor_class.h:29

◆ get_covariance()

Eigen::MatrixXd mars::PositionSensorClass::get_covariance ( const std::shared_ptr< void > &  sensor_data)
inlinevirtual

get_covariance Resolves a void pointer to the covariance matrix of the corresponding sensor type Each sensor is responsible to cast its own data type

Parameters
sensor_data
Returns
Covariance matrix contained in the sensor data struct

Implements mars::SensorInterface.

58  {
59  PositionSensorData data = *static_cast<PositionSensorData*>(sensor_data.get());
60  return data.get_full_cov();
61  }
+ Here is the call graph for this function:

◆ set_initial_calib()

void mars::PositionSensorClass::set_initial_calib ( std::shared_ptr< void >  calibration)
inlinevirtual

set_initial_calib Sets the calibration of an individual sensor

Parameters
calibration

Implements mars::SensorInterface.

64  {
65  initial_calib_ = calibration;
67  }
std::shared_ptr< void > initial_calib_
Definition: update_sensor_abs_class.h:37

◆ Initialize()

BufferDataType mars::PositionSensorClass::Initialize ( const Time timestamp,
std::shared_ptr< void >  measurement,
std::shared_ptr< CoreType latest_core_data 
)
inlinevirtual

Initialize the state of an individual sensor.

Parameters
timestampcurrent timestamp
measurementcurrent sensor measurement
latest_core_data
Returns

Implements mars::SensorInterface.

71  {
72  // PositionMeasurementType measurement = *static_cast<PositionMeasurementType*>(sensor_data.get());
73 
74  PositionSensorData sensor_state;
75  std::string calibration_type;
76 
77  if (this->initial_calib_provided_)
78  {
79  calibration_type = "Given";
80 
81  PositionSensorData calib = *static_cast<PositionSensorData*>(initial_calib_.get());
82 
83  sensor_state.state_ = calib.state_;
84  sensor_state.sensor_cov_ = calib.sensor_cov_;
85  }
86  else
87  {
88  calibration_type = "Auto";
89  std::cout << "Position calibration AUTO init not implemented yet" << std::endl;
90  exit(EXIT_FAILURE);
91  }
92 
93  // Bypass core state for the returned object
94  BufferDataType result(std::make_shared<CoreType>(*latest_core_data.get()),
95  std::make_shared<PositionSensorData>(sensor_state));
96 
97  is_initialized_ = true;
98 
99  std::cout << "Info: Initialized [" << name_ << "] with [" << calibration_type << "] Calibration at t=" << timestamp
100  << std::endl;
101 
102  std::cout << "Info: [" << name_ << "] Calibration(rounded):" << std::endl;
103  std::cout << "\tPosition[m]: [" << sensor_state.state_.p_ip_.transpose() << " ]" << std::endl;
104 
105  return result;
106  }
bool is_initialized_
True if the sensor has been initialized.
Definition: sensor_abs_class.h:24

◆ CalcUpdate()

bool mars::PositionSensorClass::CalcUpdate ( const Time timestamp,
std::shared_ptr< void >  measurement,
const CoreStateType prior_core_state_data,
std::shared_ptr< void >  latest_sensor_data,
const Eigen::MatrixXd &  prior_cov,
BufferDataType new_state_data 
)
inlinevirtual

CalcUpdate Calculates the update for an individual sensor definition.

Parameters
timestampcurrent timestamp
measurementcurrent sensor measurement
prior_core_state_data
latest_sensor_data
prior_covPrior covariance containing core, sensor and sensor cross covariance
new_state_dataUpdated state data
Returns
True if the update was successful, false if the update was rejected

Implements mars::SensorInterface.

111  {
112  // Cast the sensor measurement and prior state information
113  PositionMeasurementType* meas = static_cast<PositionMeasurementType*>(measurement.get());
114  PositionSensorData* prior_sensor_data = static_cast<PositionSensorData*>(latest_sensor_data.get());
115 
116  // Decompose sensor measurement
117  Eigen::Vector3d p_meas = meas->position_;
118 
119  // Extract sensor state
120  PositionSensorStateType prior_sensor_state(prior_sensor_data->state_);
121 
122  // Generate measurement noise matrix and check
123  // if noisevalues from the measurement object should be used
124  Eigen::MatrixXd R_meas_dyn;
125  if (meas->has_meas_noise && use_dynamic_meas_noise_)
126  {
127  meas->get_meas_noise(&R_meas_dyn);
128  }
129  else
130  {
131  R_meas_dyn = this->R_.asDiagonal();
132  }
133  const Eigen::Matrix<double, 3, 3> R_meas = R_meas_dyn;
134 
135  const int size_of_core_state = CoreStateType::size_error_;
136  const int size_of_sensor_state = prior_sensor_state.cov_size_;
137  const int size_of_full_error_state = size_of_core_state + size_of_sensor_state;
138  const Eigen::MatrixXd P = prior_cov;
139  assert(P.size() == size_of_full_error_state * size_of_full_error_state);
140 
141  // Calculate the measurement jacobian H
142  const Eigen::Matrix3d I_3 = Eigen::Matrix3d::Identity();
143  const Eigen::Vector3d P_wi = prior_core_state.p_wi_;
144  const Eigen::Matrix3d R_wi = prior_core_state.q_wi_.toRotationMatrix();
145  const Eigen::Vector3d P_ip = prior_sensor_state.p_ip_;
146 
147  // Position
148  const Eigen::Matrix3d Hp_pwi = I_3;
149  const Eigen::Matrix3d Hp_vwi = Eigen::Matrix3d::Zero();
150  const Eigen::Matrix3d Hp_rwi = -R_wi * Utils::Skew(P_ip);
151  const Eigen::Matrix3d Hp_bw = Eigen::Matrix3d::Zero();
152  const Eigen::Matrix3d Hp_ba = Eigen::Matrix3d::Zero();
153  const Eigen::Matrix3d Hp_pip = R_wi;
154 
155  // Assemble the jacobian for the position (horizontal)
156  // H_p = [Hp_pwi Hp_vwi Hp_rwi Hp_bw Hp_ba Hp_pig ];
157  Eigen::MatrixXd H(3, Hp_pwi.cols() + Hp_vwi.cols() + Hp_rwi.cols() + Hp_bw.cols() + Hp_ba.cols() + Hp_pip.cols());
158 
159  H << Hp_pwi, Hp_vwi, Hp_rwi, Hp_bw, Hp_ba, Hp_pip;
160 
161  // Calculate the residual z = z~ - (estimate)
162  // Position
163  const Eigen::Vector3d p_est = P_wi + R_wi * P_ip;
164  residual_ = Eigen::MatrixXd(p_est.rows(), 1);
165  residual_ = p_meas - p_est;
166 
167  // Perform EKF calculations
168  mars::Ekf ekf(H, R_meas, residual_, P);
169  const Eigen::MatrixXd correction = ekf.CalculateCorrection(&chi2_);
170  assert(correction.size() == size_of_full_error_state * 1);
171 
172  // Perform Chi2 test
173  if (!chi2_.passed_ && chi2_.do_test_)
174  {
176  return false;
177  }
178 
179  Eigen::MatrixXd P_updated = ekf.CalculateCovUpdate();
180  assert(P_updated.size() == size_of_full_error_state * size_of_full_error_state);
181  P_updated = Utils::EnforceMatrixSymmetry(P_updated);
182 
183  // Apply Core Correction
184  CoreStateVector core_correction = correction.block(0, 0, CoreStateType::size_error_, 1);
185  CoreStateType corrected_core_state = CoreStateType::ApplyCorrection(prior_core_state, core_correction);
186 
187  // Apply Sensor Correction
188  const Eigen::MatrixXd sensor_correction = correction.block(size_of_core_state, 0, size_of_sensor_state, 1);
189  const PositionSensorStateType corrected_sensor_state = ApplyCorrection(prior_sensor_state, sensor_correction);
190 
191  // Return Results
192  // CoreState data
193  CoreType core_data;
194  core_data.cov_ = P_updated.block(0, 0, CoreStateType::size_error_, CoreStateType::size_error_);
195  core_data.state_ = corrected_core_state;
196 
197  // SensorState data
198  std::shared_ptr<PositionSensorData> sensor_data(std::make_shared<PositionSensorData>());
199  sensor_data->set_cov(P_updated);
200  sensor_data->state_ = corrected_sensor_state;
201 
202  BufferDataType state_entry(std::make_shared<CoreType>(core_data), sensor_data);
203 
204  if (const_ref_to_nav_)
205  {
206  // corrected_sensor_data.ref_to_nav = prior_ref_to_nav;
207  }
208  else
209  {
210  // TODO(chb) also estimate ref to nav
211  }
212 
213  *new_state_data = state_entry;
214 
215  return true;
216  }
bool passed_
Determine if the test is performed or not.
Definition: ekf.h:84
bool do_test_
Upper critival value.
Definition: ekf.h:83
void PrintReport(const std::string &name)
PrintReport Print a formated report e.g. if the test did not pass.
static constexpr int size_error_
Definition: core_state_type.h:38
static CoreStateType ApplyCorrection(CoreStateType state_prior, Eigen::Matrix< double, CoreStateType::size_error_, 1 > correction)
ApplyCorrection.
Definition: core_state_type.h:46
Definition: ekf.h:92
PositionSensorStateType ApplyCorrection(const PositionSensorStateType &prior_sensor_state, const Eigen::MatrixXd &correction)
Definition: position_sensor_class.h:218
bool use_dynamic_meas_noise_
True if dynamic noise values from measurements should be used.
Definition: sensor_abs_class.h:29
Eigen::VectorXd R_
Measurement noise "squared".
Definition: update_sensor_abs_class.h:32
Eigen::MatrixXd residual_
Definition: update_sensor_abs_class.h:31
static Eigen::MatrixXd EnforceMatrixSymmetry(const Eigen::Ref< const Eigen::MatrixXd > &mat_in)
EnforceMatrixSymmetry.
static Eigen::Matrix3d Skew(const Eigen::Vector3d &v)
skew generate the skew symmetric matrix of v
Eigen::Matrix< double, CoreStateType::size_error_, 1 > CoreStateVector
Definition: core_state_type.h:135
+ Here is the call graph for this function:

◆ ApplyCorrection()

PositionSensorStateType mars::PositionSensorClass::ApplyCorrection ( const PositionSensorStateType prior_sensor_state,
const Eigen::MatrixXd &  correction 
)
inline
220  {
221  // state + error state correction
222 
223  PositionSensorStateType corrected_sensor_state;
224  corrected_sensor_state.p_ip_ = prior_sensor_state.p_ip_ + correction.block(0, 0, 3, 1);
225  return corrected_sensor_state;
226  }
+ Here is the caller graph for this function:

The documentation for this class was generated from the following file: