mars_lib  0.1.0.3dc76ee85e09
Modular and Robust Sensor-Fusion
position_sensor_class.h
Go to the documentation of this file.
1 // Copyright (C) 2021 Christian Brommer, Control of Networked Systems, University of Klagenfurt, Austria.
2 //
3 // All rights reserved.
4 //
5 // This software is licensed under the terms of the BSD-2-Clause-License with
6 // no commercial use allowed, the full terms of which are made available
7 // in the LICENSE file. No license in patents is granted.
8 //
9 // You can contact the author at <christian.brommer@ieee.org>
10 
11 #ifndef POSITIONSENSORCLASS_H
12 #define POSITIONSENSORCLASS_H
13 
14 #include <mars/core_state.h>
15 #include <mars/ekf.h>
20 #include <mars/time.h>
22 #include <iostream>
23 #include <memory>
24 #include <string>
25 #include <utility>
26 
27 namespace mars
28 {
30 
32 {
33 public:
34  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
35 
36  PositionSensorClass(const std::string& name, std::shared_ptr<CoreState> core_states)
37  {
38  name_ = name;
39  core_states_ = std::move(core_states);
40  const_ref_to_nav_ = false;
42 
43  // chi2
44  chi2_.set_dof(3);
45 
46  std::cout << "Created: [" << this->name_ << "] Sensor" << std::endl;
47  }
48 
49  virtual ~PositionSensorClass() = default;
50 
51  PositionSensorStateType get_state(const std::shared_ptr<void>& sensor_data)
52  {
53  PositionSensorData data = *static_cast<PositionSensorData*>(sensor_data.get());
54  return data.state_;
55  }
56 
57  Eigen::MatrixXd get_covariance(const std::shared_ptr<void>& sensor_data)
58  {
59  PositionSensorData data = *static_cast<PositionSensorData*>(sensor_data.get());
60  return data.get_full_cov();
61  }
62 
63  void set_initial_calib(std::shared_ptr<void> calibration)
64  {
65  initial_calib_ = calibration;
67  }
68 
69  BufferDataType Initialize(const Time& timestamp, std::shared_ptr<void> /*sensor_data*/,
70  std::shared_ptr<CoreType> latest_core_data)
71  {
72  // PositionMeasurementType measurement = *static_cast<PositionMeasurementType*>(sensor_data.get());
73 
74  PositionSensorData sensor_state;
75  std::string calibration_type;
76 
77  if (this->initial_calib_provided_)
78  {
79  calibration_type = "Given";
80 
81  PositionSensorData calib = *static_cast<PositionSensorData*>(initial_calib_.get());
82 
83  sensor_state.state_ = calib.state_;
84  sensor_state.sensor_cov_ = calib.sensor_cov_;
85  }
86  else
87  {
88  calibration_type = "Auto";
89  std::cout << "Position calibration AUTO init not implemented yet" << std::endl;
90  exit(EXIT_FAILURE);
91  }
92 
93  // Bypass core state for the returned object
94  BufferDataType result(std::make_shared<CoreType>(*latest_core_data.get()),
95  std::make_shared<PositionSensorData>(sensor_state));
96 
97  is_initialized_ = true;
98 
99  std::cout << "Info: Initialized [" << name_ << "] with [" << calibration_type << "] Calibration at t=" << timestamp
100  << std::endl;
101 
102  std::cout << "Info: [" << name_ << "] Calibration(rounded):" << std::endl;
103  std::cout << "\tPosition[m]: [" << sensor_state.state_.p_ip_.transpose() << " ]" << std::endl;
104 
105  return result;
106  }
107 
108  bool CalcUpdate(const Time& /*timestamp*/, std::shared_ptr<void> measurement, const CoreStateType& prior_core_state,
109  std::shared_ptr<void> latest_sensor_data, const Eigen::MatrixXd& prior_cov,
110  BufferDataType* new_state_data)
111  {
112  // Cast the sensor measurement and prior state information
113  PositionMeasurementType* meas = static_cast<PositionMeasurementType*>(measurement.get());
114  PositionSensorData* prior_sensor_data = static_cast<PositionSensorData*>(latest_sensor_data.get());
115 
116  // Decompose sensor measurement
117  Eigen::Vector3d p_meas = meas->position_;
118 
119  // Extract sensor state
120  PositionSensorStateType prior_sensor_state(prior_sensor_data->state_);
121 
122  // Generate measurement noise matrix and check
123  // if noisevalues from the measurement object should be used
124  Eigen::MatrixXd R_meas_dyn;
126  {
127  meas->get_meas_noise(&R_meas_dyn);
128  }
129  else
130  {
131  R_meas_dyn = this->R_.asDiagonal();
132  }
133  const Eigen::Matrix<double, 3, 3> R_meas = R_meas_dyn;
134 
135  const int size_of_core_state = CoreStateType::size_error_;
136  const int size_of_sensor_state = prior_sensor_state.cov_size_;
137  const int size_of_full_error_state = size_of_core_state + size_of_sensor_state;
138  const Eigen::MatrixXd P = prior_cov;
139  assert(P.size() == size_of_full_error_state * size_of_full_error_state);
140 
141  // Calculate the measurement jacobian H
142  const Eigen::Matrix3d I_3 = Eigen::Matrix3d::Identity();
143  const Eigen::Vector3d P_wi = prior_core_state.p_wi_;
144  const Eigen::Matrix3d R_wi = prior_core_state.q_wi_.toRotationMatrix();
145  const Eigen::Vector3d P_ip = prior_sensor_state.p_ip_;
146 
147  // Position
148  const Eigen::Matrix3d Hp_pwi = I_3;
149  const Eigen::Matrix3d Hp_vwi = Eigen::Matrix3d::Zero();
150  const Eigen::Matrix3d Hp_rwi = -R_wi * Utils::Skew(P_ip);
151  const Eigen::Matrix3d Hp_bw = Eigen::Matrix3d::Zero();
152  const Eigen::Matrix3d Hp_ba = Eigen::Matrix3d::Zero();
153  const Eigen::Matrix3d Hp_pip = R_wi;
154 
155  // Assemble the jacobian for the position (horizontal)
156  // H_p = [Hp_pwi Hp_vwi Hp_rwi Hp_bw Hp_ba Hp_pig ];
157  Eigen::MatrixXd H(3, Hp_pwi.cols() + Hp_vwi.cols() + Hp_rwi.cols() + Hp_bw.cols() + Hp_ba.cols() + Hp_pip.cols());
158 
159  H << Hp_pwi, Hp_vwi, Hp_rwi, Hp_bw, Hp_ba, Hp_pip;
160 
161  // Calculate the residual z = z~ - (estimate)
162  // Position
163  const Eigen::Vector3d p_est = P_wi + R_wi * P_ip;
164  residual_ = Eigen::MatrixXd(p_est.rows(), 1);
165  residual_ = p_meas - p_est;
166 
167  // Perform EKF calculations
168  mars::Ekf ekf(H, R_meas, residual_, P);
169  const Eigen::MatrixXd correction = ekf.CalculateCorrection(&chi2_);
170  assert(correction.size() == size_of_full_error_state * 1);
171 
172  // Perform Chi2 test
173  if (!chi2_.passed_ && chi2_.do_test_)
174  {
176  return false;
177  }
178 
179  Eigen::MatrixXd P_updated = ekf.CalculateCovUpdate();
180  assert(P_updated.size() == size_of_full_error_state * size_of_full_error_state);
181  P_updated = Utils::EnforceMatrixSymmetry(P_updated);
182 
183  // Apply Core Correction
184  CoreStateVector core_correction = correction.block(0, 0, CoreStateType::size_error_, 1);
185  CoreStateType corrected_core_state = CoreStateType::ApplyCorrection(prior_core_state, core_correction);
186 
187  // Apply Sensor Correction
188  const Eigen::MatrixXd sensor_correction = correction.block(size_of_core_state, 0, size_of_sensor_state, 1);
189  const PositionSensorStateType corrected_sensor_state = ApplyCorrection(prior_sensor_state, sensor_correction);
190 
191  // Return Results
192  // CoreState data
193  CoreType core_data;
194  core_data.cov_ = P_updated.block(0, 0, CoreStateType::size_error_, CoreStateType::size_error_);
195  core_data.state_ = corrected_core_state;
196 
197  // SensorState data
198  std::shared_ptr<PositionSensorData> sensor_data(std::make_shared<PositionSensorData>());
199  sensor_data->set_cov(P_updated);
200  sensor_data->state_ = corrected_sensor_state;
201 
202  BufferDataType state_entry(std::make_shared<CoreType>(core_data), sensor_data);
203 
204  if (const_ref_to_nav_)
205  {
206  // corrected_sensor_data.ref_to_nav = prior_ref_to_nav;
207  }
208  else
209  {
210  // TODO(chb) also estimate ref to nav
211  }
212 
213  *new_state_data = state_entry;
214 
215  return true;
216  }
217 
219  const Eigen::MatrixXd& correction)
220  {
221  // state + error state correction
222 
223  PositionSensorStateType corrected_sensor_state;
224  corrected_sensor_state.p_ip_ = prior_sensor_state.p_ip_ + correction.block(0, 0, 3, 1);
225  return corrected_sensor_state;
226  }
227 };
228 } // namespace mars
229 
230 #endif // POSITIONSENSORCLASS_H
bool has_meas_noise
Definition: measurement_base_class.h:23
bool get_meas_noise(Eigen::MatrixXd *meas_noise)
get the measurement noise associated with the current sensor measurement
Definition: measurement_base_class.h:25
int cov_size_
Definition: base_states.h:25
The BaseSensorData class binds the sensor state and covariance matrix.
Definition: bind_sensor_data.h:29
EIGEN_MAKE_ALIGNED_OPERATOR_NEW T state_
Definition: bind_sensor_data.h:30
Eigen::MatrixXd get_full_cov() const
get_full_cov builds the full covariance matrix
Definition: bind_sensor_data.h:63
Eigen::MatrixXd sensor_cov_
covariance of the sensor states
Definition: bind_sensor_data.h:37
The BufferDataType binds the core and sensor state in form of a shared void pointer.
Definition: buffer_data_type.h:36
bool passed_
Determine if the test is performed or not.
Definition: ekf.h:84
bool do_test_
Upper critival value.
Definition: ekf.h:83
void set_dof(const int &value)
set_dof Set degree of freedom for the X2 distribution
void PrintReport(const std::string &name)
PrintReport Print a formated report e.g. if the test did not pass.
Definition: core_state_type.h:21
static constexpr int size_error_
Definition: core_state_type.h:38
Eigen::Vector3d p_wi_
Definition: core_state_type.h:27
Eigen::Quaternion< double > q_wi_
Definition: core_state_type.h:29
static CoreStateType ApplyCorrection(CoreStateType state_prior, Eigen::Matrix< double, CoreStateType::size_error_, 1 > correction)
ApplyCorrection.
Definition: core_state_type.h:46
Definition: core_type.h:19
CoreStateMatrix cov_
Definition: core_type.h:22
CoreStateType state_
Definition: core_type.h:21
Definition: ekf.h:92
Eigen::MatrixXd CalculateCovUpdate()
CalculateCovUpdate Updating the state covariance after the state update.
Eigen::MatrixXd CalculateCorrection()
Kalman gain.
Definition: position_measurement_type.h:21
EIGEN_MAKE_ALIGNED_OPERATOR_NEW Eigen::Vector3d position_
Position [x y z].
Definition: position_measurement_type.h:25
Definition: position_sensor_class.h:32
PositionSensorStateType ApplyCorrection(const PositionSensorStateType &prior_sensor_state, const Eigen::MatrixXd &correction)
Definition: position_sensor_class.h:218
void set_initial_calib(std::shared_ptr< void > calibration)
set_initial_calib Sets the calibration of an individual sensor
Definition: position_sensor_class.h:63
Eigen::MatrixXd get_covariance(const std::shared_ptr< void > &sensor_data)
get_covariance Resolves a void pointer to the covariance matrix of the corresponding sensor type Each...
Definition: position_sensor_class.h:57
PositionSensorStateType get_state(const std::shared_ptr< void > &sensor_data)
Definition: position_sensor_class.h:51
bool CalcUpdate(const Time &, std::shared_ptr< void > measurement, const CoreStateType &prior_core_state, std::shared_ptr< void > latest_sensor_data, const Eigen::MatrixXd &prior_cov, BufferDataType *new_state_data)
CalcUpdate Calculates the update for an individual sensor definition.
Definition: position_sensor_class.h:108
EIGEN_MAKE_ALIGNED_OPERATOR_NEW PositionSensorClass(const std::string &name, std::shared_ptr< CoreState > core_states)
Definition: position_sensor_class.h:36
virtual ~PositionSensorClass()=default
BufferDataType Initialize(const Time &timestamp, std::shared_ptr< void >, std::shared_ptr< CoreType > latest_core_data)
Initialize the state of an individual sensor.
Definition: position_sensor_class.h:69
Definition: position_sensor_state_type.h:20
EIGEN_MAKE_ALIGNED_OPERATOR_NEW Eigen::Vector3d p_ip_
Definition: position_sensor_state_type.h:24
std::string name_
Name of the individual sensor instance.
Definition: sensor_abs_class.h:23
bool is_initialized_
True if the sensor has been initialized.
Definition: sensor_abs_class.h:24
bool const_ref_to_nav_
True if the reference should not be estimated.
Definition: sensor_abs_class.h:27
bool use_dynamic_meas_noise_
True if dynamic noise values from measurements should be used.
Definition: sensor_abs_class.h:29
Definition: time.h:20
Definition: update_sensor_abs_class.h:24
bool initial_calib_provided_
True if an initial calibration was provided.
Definition: update_sensor_abs_class.h:38
std::shared_ptr< CoreState > core_states_
Definition: update_sensor_abs_class.h:42
Eigen::VectorXd R_
Measurement noise "squared".
Definition: update_sensor_abs_class.h:32
std::shared_ptr< void > initial_calib_
Definition: update_sensor_abs_class.h:37
Chi2 chi2_
Definition: update_sensor_abs_class.h:40
Eigen::MatrixXd residual_
Definition: update_sensor_abs_class.h:31
static Eigen::MatrixXd EnforceMatrixSymmetry(const Eigen::Ref< const Eigen::MatrixXd > &mat_in)
EnforceMatrixSymmetry.
static Eigen::Matrix3d Skew(const Eigen::Vector3d &v)
skew generate the skew symmetric matrix of v
Definition: buffer.h:27
Eigen::Matrix< double, CoreStateType::size_error_, 1 > CoreStateVector
Definition: core_state_type.h:135